Кодирование чисел
Существуют два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.
Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера области памяти, используемой для размещения чисел. В k-разрядной ячейке может храниться 2k различных значений целых чисел.
Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, необходимо:
- перевести число N в двоичную систему счисления;
- полученный результат дополнить слева незначащими нулями до k разрядов.
Пример. Получить внутреннее представление целого числа 1607 в 2-х байтовой ячейке.
Переведем число в двоичную систему: 160710 = 110010001112. Внутреннее представление этого числа в ячейке будет следующим: 0000 0110 0100 0111.
Для записи внутреннего представления целого отрицательного числа (-N) необходимо:
- получить внутреннее представление положительного числа N;
- обратный код этого числа заменой 0 на 1 и 1 на 0;
- полученному числу прибавить 1.
Пример. Получим внутреннее представление целого отрицательного числа -1607. Воспользуемся результатом предыдущего примера и запишем внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Инвертированием получим обратный код: 1111 1001 1011 1000. Добавим единицу: 1111 1001 1011 1001 - это и есть внутреннее двоичное представление числа -1607.
Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p, которую называют порядком: R = m * n p.
Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства:
12.345 = 0.0012345 x 104 = 1234.5 x 10-2 = 0.12345 x 102
Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию: 0.1p <= m < 1p. Иначе говоря, мантисса меньше 1 и первая значащая цифра - не ноль (p - основание системы счисления).
В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранятся), так для числа 12.345 в ячейке памяти, отведенной для хранения мантиссы, будет сохранено число 12345. Для однозначного восстановления исходного числа остается сохранить только его порядок, в данном примере - это 2.