Практическая информатика



         

Решение уравнений, систем и неравенств


Mathematica включает в себя средства поиска корней различных типов уравнений и систем. Чаще всего для этих целей используется функция Solve[eqn, var], где eqn - уравнение или система, задаваемая списком уравнений, var - переменная или список переменных, которые требуется определить. Результат вычислений - список корней (возможно пустой).


Палитра Basic Calculations в разделе Algebra содержит несколько шаблонов для ввода функции Solve (пункт Solving Equations). Обратите внимание, что левая и правые части уравнения соединяются символами ==, например,

Solve[3 x + 9 == 0, x] Solve[x^2 + 2b*x + c == 0, x] Solve[x^2 + 1 == 0, x] Solve[{x==1+2a*y, y==9+2x}, {x,y}]

Решения ищутся на множестве комплексных чисел, причем мнимая единица обозначается символом I. Для тригонометрических уравнений выдается только одно из бесконечного множества решений.

Программа позволяет также решать логарифмические и показательные уравнения. Натуральные логарифмы задаются функцией Log, а логарифмы по произвольному основанию n - в виде Log[n, expr], где expr - аргумент логарифмической функции, например, Log[2, 1024]. Для Эйлеровой константы (основания натурального логарифма) используется обозначение E.

Пример

Следующий фрагмент демонстрирует решение уравнения


In[12]:= Solve[Log[Sqrt[x]]==Sqrt[Log[x]], x] Out[12]= {{x -> 1}, {x -> E^4}}

Для решения неравенств предварительно следует подключить дополнительный модуль расширения Algebra:

<<Algebra`InequalitySolve`

Имя функции, решающей неравенства, совпадает с названием подпакета - InequalitySolve. Для задания неравенств используют знаки > (строго больше), >= (больше или равно), < (строго меньше) и <= (меньше или равно), например,

In[13]:= InequalitySolve[x^2-1<0,x] Out[13]= -1<x<1

In[14]:= InequalitySolve[x^2/(x^2-1)>=0,x] Out[14]= x<-1 || x==0 || x>1

In[15]:= InequalitySolve[(2x-1)/(4(x+1))<Cos[5Pi/3],x] Out[15]= x<-1

При решении неравенств, отличных от дробно-рациональных, система выдает предупреждение о возможном некорректном решении:




Содержание  Назад  Вперед