Практическая информатика



         

Клеточные автоматы - часть 2


Если состояние системы в произвольный момент времени характеризуется лишь ее предыдущим состоянием и набором правил, регламентирующих ее переход, то она называется автоматом. Клеточные автоматы широко применяются для моделирования систем, в которых важную роль играет пространственное взаимодействие между элементами. Существует много примеров таких моделей в биологии, информатике (включая системы телекоммуникации) и других областях. В физике, например, клеточные автоматы применяются для анализа явлений переноса (теплопроводности, диффузии и вязкости) и моделирования твердого тела.

Познакомимся подробнее с игрой "Жизнь", относящейся к категории так называемых моделирующих игр - игр, которые в той или иной степени имитируют процессы, происходящие в реальной жизни. Жизнь, как естественный процесс - явление настолько сложное и увлекательное, что тысячи ученых пытались раскрыть ее тайны. Свой вклад в решение этой проблемы внес и человек, не имевший к биологии никакого отношения, английский математик Джон Хортон Конвей.

Возникающие в процессе придуманной им игры ситуации очень похожи на реальные процессы, происходящие при зарождении, развитии и гибели колонии живых организмов. Они рождаются при благоприятном сочетании соответствующих факторов и умирают, когда условия их существования становятся невыносимыми. Условия рождения и смерти определяются исключительно взаимным расположением участников.

Действие игры происходит на плоскости, разделенной на клетки. Каждая клетка окружена 8 такими же клетками (так называемая окрестность Мура) и может находиться в двух состояниях - живом или мертвом (быть пустой). Гибель и рождение всех организмов происходит одновременно. На состояние любой клетки оказывают влияние только состояния соседних с ней клеток. Во времени эти состояния дискретно изменяются в соответствии со следующими правилами (генетическими законами Конвея).

  1. Выживание или гибель. Если живая клетка имеет менее 2 или более 3 соседей в окрестности из 8 клеток, то в следующем поколении она умирает (моделирование реальных условий - недостатка питания или перенаселенности), в противном случае она выживает.
  2. Рождение.


    Содержание  Назад  Вперед